深度学习
深度学习

百度飞桨PaddlePaddle车牌识别

飞桨(PaddlePaddle)可以从官网按提示安装。本教程通过七个AI疫情实战案例进行学习,包括手势和车牌识别等。使用飞桨框架和多种库如numpy和opencv建立图像列表,并定义数据集reader。MyLeNet网络模型通过训练和测试集来优化性能,在GPU环境下训练500次。最后,处理车牌图像分割字符,并使用训练好的模型进行识别,将结果映射到实际标签。

Tensorflow 2.0 !!!! No module named ‘tensorflow.examples.tutorials‘解决办法,有用

TensorFlow 2.0 simplifies the MNIST dataset download by integrating it with Keras, addressing previous version issues. TensorFlow 2.0 code allows automatic download and data extraction, while the provided resolution for the ‘tutorials’ module error involves copying a missing folder from the TensorFlow GitHub repo or a provided transfer link.

深度卷积生成对抗网络(DCGAN)来生成对抗图像

此代码实现了一个深度卷积生成对抗网络(DCGAN),以生成MNIST图像。它包括一个生成器和鉴别器模型,采用TensorFlow和Keras库编写。通过训练,生成器学习制造假图像,鉴别器学习区分真假图像。优化函数用于调整参数,以最小化损失函数。训练过程涉及生成假图像并调整网络以改进生成结果。

CIFAR10-VGG16

This post details the implementation of a VGG-16 neural network for CIFAR-10 image classification in TensorFlow. It highlights the use of gradient clipping to improve convergence speed. Key aspects include network layer structure with regularization and normalization techniques, loss computation, and optimization via Adam. The script covers data loading, model creation, training with performance logging, and testing with accuracy measurement.

cifar2数据集:训练一个模型来对飞机airplane和机动车automobile两种图片进行分类

本文介绍了一个使用 TensorFlow 和 Keras 进行图片分类的神经网络模型构建、训练、评估、使用及保存的完整流程。流程包括准备包含5000张训练图片与1000张测试图片的数据集,定义一个由卷积层、池化层、Dropout层和全连接层组成的模型,以及使用callbacks在训练过程中实现TensorBoard的可视化。最终,模型在测试数据集上评估准确率达到100%,并展示了如何保存和加载模型。

TensorFlow -图像分类

This code imports the necessary libraries for TensorFlow and Keras, loads the Fashion MNIST dataset, and creates a neural network model to classify clothing images. The model, consisting of a Flatten layer and two Dense layers, is compiled and trained for five epochs. It evaluates test images and prints predictions. Additionally, it visualizes the results, showing images with their predicted labels, correct predictions in blue and incorrect in red. Finally, it demonstrates predicting a single image.